On the equation $F(x)=f(f(x))$

Claudio Baiocchi

2nd January 2005

1 The Problem

Following Ed Pegg Jr (see the section "Material added 21 November 04" on http://www.Mathpuzzle.com) we want to discuss the problem:
$\left\{\begin{array}{l}\text { which functions } F \text { have a representation of the form } F(x)=f(f(x)) ? \\ \text { for a given } F \text {, how many are the solutions, and how to build them? }\end{array}\right.$
We will confine ourselves to work in a polynomial framework, assuming that both F and f are polynomials. In fact the non-polynomial framework seems out of reach because unexpected non-polynomial solutions come out very often; see later on. On the other hand, we will allow complex coefficients for our polynomials F, f : as often happens, the real results easely follow from the complex ones; and the complex approach gives rise to more elegant results.
Remark After reading a preliminary redaction of this paper, Ed sent me the feedback:

One interesting trick to add: $(f(f(x))-x) /(f(x)-x)$ always divides evenly thus I added a last section, "Factorizations", absent in the previous redaction.

2 Preliminary Remarks

Let us firstly deal with a somewhat anomalous case: the function $F(x)=x+c$ has the solution $f(x)=x+c / 2$. If $c \neq 0$ we will see that this is the unique solution; however, if $c=0$, for any a we can also choose $f(x)=a-x$.
We will also see that, in the polynomial framework, the case $F(x)=x$ is the unique one giving raise to infinitely many solutions. Remark that this F is singular even in the non-polynomial framework: for $x \neq 0$ also the functions $f(x)=a / x$ solve. A last remark on the non-polynomial case: the rational function $F(x)=2 x /\left(1-x^{2}\right)$ has, for $|x|<1$, the trascendental solution $f(x)=$ $\tan (\sqrt{2} \cdot \arctan (x))$.
Let us fix some notations. For f polynomial of degree k, the polynomial $f(f(x))$ has degree k^{2}; thus, for a suitable k, we can represent the given F and the
unknown f in the form:

$$
F(x)=\sum_{j=0}^{k^{2}} A_{j} x^{k-j} ; \quad f(x)=\sum_{j=0}^{k} a_{j} x^{k-j} ; \quad\left(A_{0}, a_{0} \neq 0\right) ;
$$

remark that we used capital letters A_{j} for the data, and small letters a_{j} for the unknown coefficients. In other terms: we would freely choose the $k^{2}+1$ coefficients of F, and impose the equation $F(x)=f(f(x))$ by using the $k+1$ coefficients of f. It is quite natural to expect that, if $k>1$, this is impossible; and in fact we will see that, generally speaking, once we fix the first $k+1$ coefficients A_{0}, \ldots, A_{k} we have no more degree of freedom.

3 Results

Let us evaluate $f(f(x))$ modulo the lower order terms, say the terms of order strictly less than $k^{2}-k$; we will use the symbol " \cong " to denote that some lower order terms have been suppressed. Because of

$$
\left\{\begin{array}{l}
f(f(x)) \cong a_{0} \cdot[f(x)]^{k}+a_{1} \cdot[f(x)]^{k-1} ; \\
a_{0} \cdot[f(x)]^{k} \cong a_{0} \cdot\left[\left(a_{0} \cdot x^{k}\right)^{k}+k \cdot\left[a_{0} \cdot x^{k}\right]^{k-1} \cdot\left[a_{1} \cdot x^{k-1}+\cdots+a_{k}\right]\right] \\
a_{1} \cdot[f(x)]^{k-1} \cong a_{1}\left[a_{0} \cdot x^{k}\right]^{k-1}
\end{array}\right.
$$

we get:
$f(f(x)) \cong a_{0}^{k+1} \cdot x^{k * k}+k \cdot\left[a_{0} \cdot x^{k}\right]^{k-1} \cdot\left[a_{1} \cdot x^{k-1}+\cdots+a_{k}\right]+a_{1}\left[a_{0} \cdot x^{k}\right]^{k-1}$
The comparison between the leading coefficients of $F(x)$ and $f(f(x))$ gives:
$A_{0}=a_{0}^{k+1} ; \quad A_{j}=k \cdot a_{0}^{k} \cdot a_{j}$ for $j=1, \ldots, k-1 ; \quad A_{k}=k \cdot a_{0}^{k} \cdot a_{k}+a_{1} \cdot a_{0}^{k-1}$.
In particular, from $a_{0}^{k+1}=A_{0}$, we have $k+1$ possible choices for a_{0} (recall that $\left.A_{0} \neq 0\right)$. Once a value for a_{0} has been fixed:

- if $k=0$ we finished;
- if $k=1$, we need $a_{1}=A_{1} /\left(a_{0}+1\right)$, to be discussed later on;
- if $k>1$ we must choose:

$$
\begin{aligned}
& a_{j}=A_{j} /\left(k \cdot a_{0}^{k}\right) \text { for } j=1, \ldots, k-1 \\
& a_{k}=\left(A_{1}-a_{1} \cdot a_{0}^{k}\right) /\left(k \cdot a_{0}^{k}\right)=\left(A_{k}-A_{1} / k\right) /\left(k \cdot a_{0}^{k}\right)
\end{aligned}
$$

the last formula following from the already known form of a_{1}.
The case $k=1$, as already remarked, deserves a surprise: for $A_{0} \neq 1$ we simply need to choose $a_{1}=A_{1} /\left(a_{0}+1\right)$; the same formula remains true if $A_{0}=1$ and we choose $a_{0}=1$; however, for $A_{0}=1$, if we want to choose $a_{0}=-1$, we need $A_{1}=0$; then any value for a_{1} is allowed.

Let us summarize the results in the complex framework. Searching for representable polynomials $F(x)$ of degree k, we have:

- If $k<2$, for any choice of $F(x)$ other than $x+c$, there exist exactly $k+1$ solutions.
- If $k \geq 2$ we can freely choose the first $k+1$ coefficients of F; this generates $k+1$ functions f that automatically select theyr own "lower order part" for F.

Let us show how the last claim works by discussing the original example $F(x)=$ $x^{4}-4 x^{3}+8 x+2$ proposed by Ed Pegg. Our formulas force $f(x)=\omega \cdot x^{2}-$ $2 \omega \cdot x+1-2 \omega$, where ω denotes a third root of the unit. Accordingly we get $f(f(x))=x^{4}-4 x^{3}+8 x+5-3 \omega$; thus we need $\omega=1$, say $f(x)=x^{2}-2 x-1$.
A last remark concerns the real framework: let $F(x)$ be a real polynomial of degree k, other than $x+c$. Among the $k+1$ complex-coefficients polynomials f we have built, the number of real f is just one if k is odd; and, for even k, is two or none, according to $A_{0}>0$ or $A_{0}<0$.

4 Factorizations

A somewhat different approach can be based on factorizations results; e.g. let us remark that:

$$
F^{\prime}(x) / f^{\prime}(x) \text { always divides evenly }
$$

as obvious because of $F^{\prime}(x)=f(f(x))^{\prime}=f^{\prime}(f(x)) \cdot f^{\prime}(x)$.
RemarkLet x_{0} be a (real or complex) value such that $f\left(x_{0}\right)=x_{0}$. Then:

- $F^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)^{2}$.
- $F^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right) f^{\prime}\left(x_{0}\right)^{2}+f^{\prime}\left(x_{0}\right) f^{\prime \prime}\left(x_{0}\right)$
- For $k>2$ any term appearing in $F^{(k)}\left(x_{0}\right)$ contains a factor like $f^{(j)}\left(x_{0}\right)$ for a $j \geq 2$.
Now let us set $G(x):=f(f(x))-x$ and $g(x):=f(x)-x$. For any x_{0} with $g\left(x_{0}\right)=0$ one has $G\left(x_{0}\right)=0$; if one has also $g^{\prime}\left(x_{0}\right)=0$, say $f^{\prime}\left(x_{0}\right)=1$ then (see the previous remark) $G^{\prime}\left(x_{0}\right)=F^{\prime}\left(x_{0}\right)-1=0$; always due to the previous remark, if $g^{\prime \prime}\left(x_{0}\right)=0$, say $f^{\prime \prime}\left(x_{0}\right)=0$, then $G^{\prime \prime}\left(x_{0}\right)=0$; and so on.
In other words, any (real or complex) root of g is also a root of G with at least the same molteplicity; this implies that $g(x)$ is a factor of $G(x)$; say:

$$
(f(f(x))-x) /(f(x)-x) \text { always divides evenly. }
$$

Let us see how these properties can be used, by treating again the example $F(x)=x^{4}-4 x^{3}+8 x+2$: we confine ourselves to discuss the real case, thus the leading coefficients of f and f^{\prime} must be 1 and 2 , instead of ω and 2ω.
Because of $F^{\prime}(x)=4(x-1)(x-1-\sqrt{3})(x-1+\sqrt{3})$, for $f^{\prime}(x)$ we have to choose one among $2(x-1), 2(x-1-\sqrt{3})$ and $2(x-1+\sqrt{3})$.
Because of $F(x)-x=(x-2)(x+1)\left(x-\frac{3+\sqrt{13}}{2}\right)\left(x-\frac{3-\sqrt{13}}{2}\right)$ we have a priori six possible choices for the second degree polynomial $f(x)-x$; but only the choice $f(x)-x=\left(x-\frac{3+\sqrt{13}}{2}\right)\left(x-\frac{3-\sqrt{13}}{2}\right)=x^{2}-3 x-1$ is compatible with the formulas we got for $f^{\prime}(x)$; thus we end up with the already found solution $f(x)=x^{2}-2 x-1$.

